110 lines
3.4 KiB
Python
110 lines
3.4 KiB
Python
|
"""
|
||
|
01_web_scraping.py
|
||
|
"""
|
||
|
import requests
|
||
|
from bs4 import BeautifulSoup
|
||
|
import json
|
||
|
|
||
|
|
||
|
# 1. Realiza un raspado web del siguiente sitio web
|
||
|
# y guarda los datos en un archivo JSON
|
||
|
# (URL = 'http://www.bu.edu/president/boston-university-facts-stats/').
|
||
|
|
||
|
|
||
|
url = 'http://www.bu.edu/president/boston-university-facts-stats/'
|
||
|
response = requests.get(url)
|
||
|
soup = BeautifulSoup(response.text, 'html.parser')
|
||
|
|
||
|
data = {}
|
||
|
current_section = None
|
||
|
|
||
|
for section in soup.find_all('section', {'class': 'facts-categories'}):
|
||
|
|
||
|
section_data = {}
|
||
|
|
||
|
for item in section.find_all('div', {'class': 'facts-wrapper'}):
|
||
|
section_name = section.find('h5').get_text().strip()
|
||
|
for li in item.find_all('li'):
|
||
|
key = li.find('p', {'class': 'text'}).get_text().strip()
|
||
|
value = li.find('span', {'class': 'value'}).get_text().strip()
|
||
|
section_data[key] = value
|
||
|
|
||
|
data[section_name] = section_data
|
||
|
|
||
|
with open('bu_stats.json', 'w') as f:
|
||
|
json.dump(data, f, indent=2)
|
||
|
|
||
|
print("Datos guardados en bu_stats.json")
|
||
|
|
||
|
# 2. Extrae la tabla de esta URL
|
||
|
# (https://archive.ics.uci.edu/ml/datasets.php)
|
||
|
# y conviértela en un archivo JSON.
|
||
|
|
||
|
url = 'https://webcache.googleusercontent.com/search?q=cache:tT4BY9X5RxAJ:https://archive.ics.uci.edu/datasets&cd=8&hl=ca&ct=clnk&gl=es'
|
||
|
response = requests.get(url)
|
||
|
soup = BeautifulSoup(response.text, 'html.parser')
|
||
|
|
||
|
datasets = []
|
||
|
|
||
|
for div in soup.find_all('div', class_='rounded-box'):
|
||
|
dataset = {
|
||
|
'name': div.find('h2').find('a').text.strip(),
|
||
|
'description': div.find('p').text.strip(),
|
||
|
}
|
||
|
|
||
|
metadata_divs = div.find_all('div', class_='col-span-3')
|
||
|
for metadata_div in metadata_divs:
|
||
|
icon = metadata_div.find('div').find('svg')['viewBox']
|
||
|
value = metadata_div.find('span').text.strip()
|
||
|
dataset[icon] = value
|
||
|
|
||
|
datasets.append(dataset)
|
||
|
|
||
|
with open('uci_datasets.json', 'w') as f:
|
||
|
json.dump(datasets, f, indent=2)
|
||
|
|
||
|
print("Datos guardados en uci_datasets.json")
|
||
|
|
||
|
|
||
|
# 3. Realiza un raspado web de la tabla de presidentes
|
||
|
# y guarda los datos como JSON
|
||
|
# (https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States).
|
||
|
# La tabla no está muy estructurada
|
||
|
# y el proceso de raspado puede llevar mucho tiempo.
|
||
|
|
||
|
|
||
|
url = 'https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States'
|
||
|
response = requests.get(url)
|
||
|
soup = BeautifulSoup(response.text, 'html.parser')
|
||
|
|
||
|
table = soup.find('table', {'class': 'wikitable'})
|
||
|
headers = [header.get_text().strip() for header in table.find_all('th')]
|
||
|
rows = []
|
||
|
|
||
|
for row in table.find_all('tr'):
|
||
|
cells = row.find_all('td')
|
||
|
if len(cells) == len(headers):
|
||
|
rows.append([cell.get_text().strip() for cell in cells])
|
||
|
|
||
|
data = []
|
||
|
for row in rows:
|
||
|
president = {}
|
||
|
for i, header in enumerate(headers):
|
||
|
if i < len(row): # Verificar si hay celdas suficientes en la fila
|
||
|
if header == 'President':
|
||
|
president['name'] = row[i]
|
||
|
elif header == 'Party':
|
||
|
president['party'] = row[i]
|
||
|
elif header == 'State[a]':
|
||
|
president['state'] = row[i]
|
||
|
elif header == 'Took office':
|
||
|
president['took_office'] = row[i]
|
||
|
elif header == 'Left office':
|
||
|
president['left_office'] = row[i]
|
||
|
data.append(president)
|
||
|
|
||
|
with open('us_presidents.json', 'w') as f:
|
||
|
json.dump(data, f, indent=2)
|
||
|
|
||
|
print("Datos guardados en us_presidents.json")
|